NEW MICROSCOPIC MODELS OF CLUSTERING KINETICS

V. G. Dubrovskii Uunc 533.77

Successes in describing the kinetics of clustering in hypersonic jets and molecular beams
{1], diffusion chambers and Wilson cloud chambers, during the growth of surface films [2-4],
etc., have been due to the use of the Becker—Dering and Zel'dovich—Frenkel theories [4] and
the quasichemical model [5, 6] as well as its different variants [7, 8]. A large number of
studies devoted to different aspects of the problem have been done in these areas. Neverthe-
less, insufficient attention has been focused to date on the analysis of the kinetic equa-
tions, which take into account the numerous reactions and are important in the study of the
nucleation kinetics in the supercritical region, processes of the coagulation and breakup of
drops in the atmosphere, and in other problems [2, 7, 8]. This also pertains to the develop-
ment of micromodels of clusters ana their interactions, which allow equilibrium distribution
functions to be calculated for particles of arbitrary size as well as the condensation and
evaporation coefficients and the efficiency of inelastic impacts.

In this paper we consider some of these subjects. A system of kinetic equations of the
general type is formulated and a diffusion version is derived with allowance for multiparti-
cle interactions. A simple model is presented for the kinetics of nonisothermal nucleation.
We analyze the problem of finding theequilibrium size distribution functions of clusters,
using methods of statistical methods on the basis of a micromodel of a cluster. Models are
proposed for calculating the condensation and evaporation coefficients and the efficiency of
inelastic impacts.

1. General Kinetic Equation of Clustering Theory. A. ' We consider isothermal homogene-
ous clustering with allowance for numerous nonmolecular processes,

WMt E® =2+ E—F)+ &),
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The symbol (v} denotes a cluster consisting of v molecules. At times much longer than the
time of multiparticle interaction in (1.1) and shorter than size, the relaxation time of
clusters the following system of nonlinear equations can be written for the distribution
function n(v, t) = n(v):
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R =14 (b=

Here ©(v, kk') is the rate constant of the direct reaction (1.1), which we naturally consider
to be symmetrical with respect to permutations inside group v, k and k' (o(v, kk') = o(Plv,
kW#'[k'])), #, # are arbitrary permutations). The summation in (1.2) with allowance for the
symmetry property of w is carried out over nondecreasing components of vectors k and K/,
condition +%k—%k >k 1is put on all these considerations. Function g takes into account
the fact that if k has s components with k; = v, and k' has s' components with ki = v then

the coefficient (1 + s — s') must be placed in front of the corresponding term.in the sum
(1.2).
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System (1.2) is the most general mathematical form of the quasichemical model of
clustering kinetics, including those used earlier [5, 7, 8]:

1) the Smoluchowski model _(@_+(k);*(v'+'k% for which

I(v)= ;-gln(k)n(v — BBl — kB =X n@n)BOB), Blv, k) =

=o(v,k]0)(1 + Ou);

2) the Melzak model (v} + () > (v + &), (v) > (1) + (44-1), for which

A=+ @)+ ... + (1), LM =T, (%) + I3 (v),

v
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3) the Szilard—Farkas model (v) 4 (k) == (v + k), for which

L) = I(3) + I3 (v), I3 (v) = g:la(v +EEyn(v + k) —
v—1 ' (1.3)
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4) the Zel'dovich monomolecular model is obtained from (1.3) for k = 1;

5) the generalized Szilard-Farkas model (v + k)= (v + &k — &) +(k), for which

L= 3 [+ k— K)o+ k—F,F[§)—
Rt s :

—n(k)n(¥) o (v, k| E)] A + ).

Models 1 and 2 were used in theory of coagulation [7, 8] and models 3 and 4 were used in the
theory of condensation [4, 5], while model 5 has not previously been used.

B. The nonlinear system (1.2) is complicated for mathematical analysis because of its
high dimension. The method of transition from (1.2) to a quasilinear parabolic (Fokker—
Planck) equation, therefore, is effective for large clusters (v >> k, k', q = 1, with the
condition v + k — k' > k', satisfied automatically). Previously such a transition was ef-
fected on the basis of the Zel'dovich monomolecular model [9]. Let us give the simplest
derivation of the diffusion approximation, using (1.2). Introducing the notation o(v, kik') =

o,kk’), we recast I(v) in (1.2) at v >> k, k' in the form

I(v)= 2 n(k) [opsn—p&|K)n (v + & — k) — oy (k| k) n(v)]. (1.4)

k.k/

When the first term in (1.4) behind the summation sign is expanded in a Taylor series in
(k' — k), we obtain

1) = B2 T ) n () oy k|K)( — Y- | (1.5)
T k,k!
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For large clusters usually
.0,k = eu()o,E&K), 18,0(3)] = e,()n(v), (1.6)

where sm’n(v) are small quantities at v >> 1 (this has been demonstrated for the Zel'dovich
model, e.g., in [9]). When in (1.5) we confine the discussion to quadratic terms in

k' —kle, ,(v), we find
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a,n(vj = —3,J(v), J(v) = AW)n(v) — B(vjavn(v); (1.7)

A(v)=— 2 n(k)[mv(klk_')(k'—k) + avwv(klk')(k,;k)z],

k,k’

- B(v)=2n(k)mv(k|k')(";“2_"f. (1.8)
k.k’

It is important that the diffusion and drift coefficients, B(v) and A(v), take into account
the integrated contrlbutlon of multiparticle processes and Eq. (1.7) is quasilinear. For
monomolecular model 4 from (1.8) we get the well-known result [9]

A() = Wiyn = Win, BY) = 5 (W3 + W5),

Wi=n{1)o,(1]0), Wy =0,(0[1), Wiy~ Wi+ VW?

For kinetics with the reverse reactions (1.1) (models 3-5 of this type, 1,2 of the
other) we introduce the microscopic detailed balancing principle in each of the transition
channels (v) = (V') = (v - k—&') ,

n® (k) ¢ (v) oy (k [ K') = 1 (k') 1 (v + & — &) @y g (&' ) (1.9)

[n®(v) is the equilibrium distribution function]. For smooth distributions [condition (1.6)]
we expand (1.9) in a series in (k' — k) about the point v and we also carry out the moment
linearization (1.7), setting n(k) AJn%k) Introducing the normalized quantlty'ldv)__rqvﬂn%v%
o,kk) = nek)r*(v)o,(klk’) , after straightforward manipulations instead of (1.7) and (1.8)

we have

~

am(v) =0y [B(v)on(v)], B = 3 (—ky ) &y (k| K), (1.10)

(k:>h’)

i.e., the drift coefficient can be eliminated when the detailed balancing principle is in-
volved. Equation (1.10) was also derived by the methods of nonequilibrium thermodynamics
[10]. 1In contrast to [10], the treatment here allows the kinetic coefficients, which make
allowance for the multiple processes, to be expressed in terms of the elementary probabili-
ties discussed below.

C. Let us consider the generalization of model 3 to the case including more detailed
processes (v, E,) + (&, E,) == (v + k, E,,;) [E, is the internal energy of a cluster (v)] that un-

derlie nonisothermal clustering. The system of kinetic equations for the distribution func-
tions n,(E,) will be written as

n(E,) = I(E,) — LXE,), (1.11)
where IV(Ev) is the collision integral for processes of combination and decay obtained from

(1.3) by the substitution P(v—F, k)—*mv—kEb_whEhr“(V k) o V*hEW »%Ep and the introduction

of summation over E,_i, Eg, and I,H(E,) is the integral of the inelastic collisions of mole-
cules with a cluster. We assume that tg << 71, (1t and 1, are the energy and size relaxation
times) and write n,(E,) as

ny(Ey) = n(v) zy (Ey), szv(EV)‘= 1. (1.12)

Substituting (1.12) into (1.11) and summing over E,, we arrive at (1.3) with nonequilibrium
rate constants

av,k= E ’VhEv_kkEk t.
( ] ) Ev_h.EEk,vaV( )(DVE etc (1.13)



From (1.11) we easily obtain a system of equations for the internal-energy density of clus-
ters of size ¥ (Uv=§Evnv(Ev)) .
N

Uy =gy — qg: Qv == EZEVIV (Ev), qg = EE E\Y)“Is(Ev)
LY v

(qy and q, are the energy fluxes per cluster of size v from the processes of combination—de-
composition and inelastic impacts). For the monomolecular model we have a system similar to
that given in [11]:

Oy = W«T—lnv-q — Wyny— Winy + Wysitvi (1.14)
Uy = Raty—1 — Jyny — a5 + Jupaver + fine. ’
Microscopic models for the calculation of the kinetic coefficients Wﬂﬁifvi,ﬂf are discussed
in Sec. 3.

2. Equilibrium Distributions. Within the framework of the Szilard—Farkas nonisother-

mal modelﬁvF—k,EV-g-+(k,Ek)zz(vav) we consider the problem of finding ny(Ev). - Accord-

ing to statistical thermodynamics clusters satisfy the relations [12]

 (Ey) = n* (W) 2 (B, 2% (Ey) = O5gy (B exp (— ,%) (2.1)

P + Pvor = I, n"(v)=AJ3Qvexp(—”1) A =[2"—’”2}1/2
kgl )7 Y | mykgT | (2.2)

where Qv=2gv(Ev)exp (—;_"T); and gy, My, Py are the internal statistical sum, mass, and
By B

chemical potential of a cluster (v). Distribution (2.1), (2.2) satisfies the microscopic
detailed balancing principle

; v,E, . kEpv—k,Ey_p
1 (E) ny—n (Ev_) O By v By_p, = 7 (Ev) ovg, v, (2.3)

while the probabilites w averaged over the energy with functions zHE,) satisfy the macro-
scopic detailed balancing principle (law of mass action)

Blv—hB) _ _ w( AkAv_k)"’ 0w _ (
o v &) mn"(V—k)ne(k)_( B, ) G - (2.4)

For the monomolecular model it follows from (2.2)-(2.4) that
v .
bo = viy, n° () = [n*)]" I Ky (1) = AS°5Qy, 3= exp (— ;}‘—T—) (2.5)
== B

We note that for large clusters described thermodynamically Eq. (2.3) is not satisfied but
(2.4) remains valid. This means that a microscopic kinetic equation for m,(E,, t) reflect-

ing evolution 24(&,, 0) > n(£,), does not exist for them but there is a system of coupled
equations of the preceding point for successive evolution "v(EVs0)**"3(Ev’ﬂEE7ZQNt)$%(Ev,ﬂ;::
ny (Ev) [z, (E,, t) is a quasistationary energy distribution]. The simplest is the Boltzmann
distribution zI= Q3y*(T)gv(Ev) X exp(— Ev/(ksT4)) (I, is the internal temperature of a cluster

of size v). 'This assumption is used, -e.g., in [10, 11]. In the thermodynamic limit



QVC¥9XP(—4?}KkBT»(9rvis the free energy of a cluster of size v). The results of most stud-

ies on the approximation of F v for a monomolecular model, following [13], can be written as
[S, is the surface area of a cluster (v)]

Fy=Fv+aS, + Uy, Uy = Uy — e — &35, (2.6)

where & and €° physically denote the volume density of the free energy and the binding -
energy (per molecule), o and € are the surface density of the free energy and the bind-.
ing energy, and UY is the internal energy of a molecule.

Using (2.5) and (2.6), we obtain

n°(v) = A7 2 exp (av — bv*?),
. (2.7)
a=1In(1 +0),t=ni/nn=1, b__ B“ nSAs;

— AT3 A, 3m
i = A3 exp(—k—g),n (4@1) , (2.8)
A= () (e —ef), Ay m 9 — o

Here neH and n§g are the equilibrium densities of saturated vapor and adsorbed molecules

(n§g is found from the Langmuir isotherm), { is the supersaturation, A, and Ag are the heat
of evaporation of a molecule from the bulk of the cluster and the activation energy of an
adsorbed molecule, and py is the density of the liquid. It is important to emphasize that
the formula for n%y coincides with the Clapeyron—Clausius law to within the prexponential
factor [12] and instead of the thermodynamic parameters p and ¢ (o is the surface tension)
Eqs. (2.7) and (2.8) contain transparent parameters of the cluster micromodel, which admits
experimental verification (see [14] in relation to the properties of real clusters). Condi-
tion b > 0 indicates that adsorbed molecules are held on the surface by the barrier-type
potential (see Fig. 1). As shown in [13], distribution (2.7) is free of divergence as v + o
in the thermodynamic limit and correctly reflects the pattern of phase stratification. Cor-
rections (2.7), resulting from more accurate methods of calculating &, (Lothe—Pound, Rice,
Kikuchi methods), are discussed in [13].

3. Theoretical Methods of Calculating Kinetic Constants. The problem of theoretical
approaches to calculations of condensation—evaporation coefficients and the probabilities
of inelastic transition in clustering kinetics has been developed the least and the experi-
mental data pertaining to it often differ by orders of magnitude. Accordingly, we shall dis-
cuss this in greater detail. We start from the general expression (1.13) for the nonequilib-
rium constant decay-rate constant and consider some approximate variants of it.

1. According to the theory of absolute reaction rates [15], z(E,) ~ 23(E,), decay
is assumed to occur by the mechanism of an activated complex (v) = (v)*==(v—Fk)+ (k). The
symbol (v)* is taken to mean a sphere of radius ry(k) (see Fig. 1) and E/*(k), E;(k), E2(k)

denote the energy of the activated complex, the binding energy of fragments (v — k) and (k),
and the activation barrier of coagulation of fragments (v — k) and (k), respectively, via
one-dimensional reaction channel [at E, = E,*(k)] — the relative motion of fragments (v — k)
and (k) in a barrier-type spherical field V,,-i (r) (which is consistent with the comment in
Sec. 2) with energy & (e >0, E, > E*k) = f(E,_;, E,)). On the basis of these assumptions, we
write w as

1,2>0,

v—k,Ey__ ik, E
v—h3k By 0.2<0, (3.1)

Oy, 5, H(F — E5 (k) Qu(e) Py (e), H(x).={

where Q,,(¢) is the frequency of one-dimensional oscillations of fragments (v — k) and (k) in
the potential well and P,(e) is the penetration probability. We use (2.1) for z5(E,) and
the representation (3. 1) in (1.13), thus isolating the statistical sums of a stable cluster
(v)Q, and the activated complex (v)* Q% at E,;ZEX(%). Shifting the origin for the ener-

o k ~ Ey (k
gies to Q,, and Q.* (Qv==(%exp( v()) (%-—-Q: (-— é;;)))’ and also isolating from Qu* the

one-dimensional oscillating sum of the activated complex Q] (Q} = QiQy*), from (1.13) we
have the rough approximation
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a(v )= D, (G303"/00) o~ 2522),

-3 éxp(—;&), AE} (k) = E3 (k) — B3 (k), (3.2)

en20

Dy= 3 PlenOulemexp (o).

Y

Equation (3.2) is a typical expression for a decay rate constant, where D,, is the averaged
barrier penetration factor. Let us now consider three cases: a) in the harmonic approxima-

e, \Tt
tion Q;=[1—exp(—ﬁ)] , and at hQ, € kg7 Eq. (3.2) coincides with the expression for
B

the evaporation coefficient given in [16]; b) at hQ, > kyT we set P(e) = H(e —E,«(k)), 03* ~ 0,

whereupon (3.2) goes over into the familiar Wigner—Polanyi formula (18]

AE% %)
Tl

a (v, k) > Qy exp (— ); AEy (k) = E5 (k) — Ey (k);

c) assuming the motion in the well to be quasiclassical ('}5 -*j‘dﬁ), from (3.2) at

e

Qv =0y and hQ, < kgl we find

kT AE} (k (
a(v, k)u—%—Dv(T)exp (_ k‘\;;)>, Dv(T)=ydst(s)exP (—k—x%,).
y :

A similar expression (but without an exponent) can be easily obtained from intuitive consider-
ations for B(v — k, k) while a{v, k) and 8(v — k, k) are related by the detailed balancing
equation.

2. TFor the simple model of nonisothermal condensation (T, # T) proposed in Sec. 1 we
must take the nonequilibrium effects (#,(E,) #%,%E,)), and also calculate the rate constants of
the“cbndensation, evaporation, and elastic impacts of molecules on the surface of a cluster
(v). Let us investigate this, using the pattern of the dynamics of the gas-surface interac-
tion. Suppose that Py*(e, €[T,), P, (¢, e[T,)(e > 0,8 << 0) is the probability density of absorp-
tion—desorption processes and PA(e, &'{T}) is the probability density of inelastic impacts

(e, €' > 0) on the surface of a cluster (v) with temperature T,. Assuming that (&) ==z2(E,),



we arrived at an expression for all the kinetic coefficients of the nonisothermal model
(1.14)

V.
W3 (T, Ty) = kgTn,Sy 2 (P,

W,(T, T,) = kpTySy (Py); (3.3)
(T, T2y = (kTP S, 2{(E — &) PY), 5.4)
iy = (ksT S ((e—e)Py™;
J%(Ty Ty) = (ksT) (n'z + ng‘%) S{(e — )P (3.5)

(the subscript g pertains to the characteristics of the passive gas). In Egs. (3.3)-(3.5)
8k, T
wmy o

1/2
E.::dkBT,gHz kazx,ng==( ) , the symbol < > denotes averaging carried out as follows:

w fore
PHy= [ aee™ | a'Pf(e,e| Ty,
A
Ey o .
P = [ deQue)e™ [ dePy(e,e|T,) 5 et

- : EY

when thermodynamic equilibrium exists between the gas and the clusters Jj,®=0. 1If in
the expressions for j¥ and jj the average value, which is equal to kg(T — T,), is carried out
in front of the averaging sign for (e — €'), we obtain the approximation

jv+ o~ kE(T’—Tv)Wv+; v = kB<T"'T‘v)W‘v-' (3'6)

Substituting (3.6) into (1.14) and expanding the terms in the neighborhood of the point v,

and also assuming for simplicity that U, = en,T, (where c,, is the heat capacity), we find

a simple relaxation equation for T:

cvai (n'vTv) = —av[“(v)(Tv_T)] =+ nv-vH(Ti Tv)»
%x(v) = kgn (W, —W,*).

In calculating Wi and W) we can use analytical formulas for the probabilities of inelastic
impacts, given in studies on the interaction of gases from surfaces.

In summary, the proposed microscopic models are used for describing the kinetics
of clusters of any size. They provide a possibility for calculating the condensation, evap-
oration, and inelastic-impact coefficients by the methods of the theory of chemical reactions
in the interaction of a gas with surfaces. A more detailed study can be made by the interac-
tion of a molecule with a cluster, the reciprocal influence of clustering and rotational and
oscillatory kinetics, as well as other effects.

LITERATURE CITED

1. I. S. Kotake and I. I. Glass, "Flows with nucleation and condensation," Prog. Aerospace
Sci., 19, No. 2-4 (1981).

2. Yu. F. Komnik, Physics of Thin Metallic Films [in Russian], Atomizdat, Moscow (1979).

3. V. I. Antsiferov, T. V. Bobrov, L. K. Druzhinin, et al., Powder Metallurgy and Evapora-
tion Coatings [in Russian], Metallurgiya, Moscow (1987). '

4. M, Fol'mer, Kinetics of the Formation of a New Phase [in Russian], Nauka, Moscow (1986).

5. A. A. Lushnikov and A. G. Sutugin, 'Present state of the theory of homogeneous condensa-
tion," Usp. Khim., 5, No. 3 (1976).



10.

11.

12,

13.

14.

15.

16.

17.

F. F. Abraham, Homogeneous Nucleation Theory. The Pretransition Theory of Vapour
Condensation, Academic Press, New York (1974).

V. M. Voloshchuk, Kinetic Theory of Coagulation [in Russian], Gidrometeoizdat, Leningrad
(1984).

V. M. Voloshchuk and Yu. S. Sedunov, Coagulation Processes in Dispersed Media [in Rus-
sian], Gidrometeoizdat, Leningrad (1975).

F. M. Kuni and A. P. Grinin, "Small parameters of macroscopic condensation theory,"
Vestn. LGU, Fiz., Khim., No. 22(4) (1982).

A. P. Bashkirov and S. P. Fisenko, '"Derivation of the equations of nonisothermal nuclea-
tion," Preprint No. 68 [in Russian], Inst. Prob. Mech. Acad. Sci. USSR, Moscow (1976).

A. V. Krestinin, Simple model of nonisothermal homogeneous condensation in gases,' Khim.
Fiz., 5, No. 2 (1986).

L. D. Landau and E. M. Lifshitz, Statistical Physics, Vol. 1, Pergamon Press, Oxford
(1980).

A. V. Bogdanov, Yu. E. Gorbachev, G. V. Dubrovskii, et al., "Equilibrium solutions of
the quasichemical model of condensation,' Preprint No. 1163 [in Russian], Physicotech.,
Inst. Acad. Sci. USSR, Leningrad (1987).

A. A. Vostrikov and D. Yu. Dubov, "Real properties of clusters and models of condensa-
tion," Preprint No. 112, Inst. Therm. Phys. Sib. Branch Acad. Sci. USSR, Novosibirsk
(1984).

N. M. Kuznetsov, Kinetics of Monomolecular Decomposition [in Russian], Nauka, Moscow
(1982).

E. Mortensen and H. Eyring, "Transmission coefficients for evaporation and condensation,"
J. Chem. Phys., 64, No. 7 (1960).

H. J. Kreuzer and H. W. Gortel, Physiosorption Kinetics, Springer-Verlag, Berlin (1985).



